Amphiphysin IIm, a Novel Amphiphysin II Isoform, Is Required for Macrophage Phagocytosis

Elizabeth S. Gold,* Naomi S. Morrissette,§ David M. Underhill,* Jian Guo,* Michael Bassetti,* and Alan Aderem*³

*Department of Immunology
† Division of Cardiology
University of Washington
Seattle, Washington 98195

Summary

Phagocytosis of pathogens by macrophages initiates the innate immune response, which in turn orchestrates the adaptive immune response. Amphiphysin II participates in receptor-mediated endocytosis, in part, by recruiting the GTPase dynamin to the nascent endosome. We demonstrate here that a novel isoform of amphiphysin II associates with early phagosomes in macrophages. We have ablated the dynamin-binding site of this protein and shown that this mutant form of amphiphysin II inhibits phagocytosis at the stage of membrane extension around the bound particles. We define a signaling cascade in which PI3K is required to recruit amphiphysin II to the phagosome, and amphiphysin II in turn recruits dynamin. Thus, amphiphysin II facilitates a critical initial step in host response to infection.

Introduction

Macrophages are essential to both the innate and acquired immune response because of their unique ability to phagocytose and degrade pathogens, to present antigens to T cells, and to stimulate an inflammatory response. Macrophages recognize infectious agents using pattern-recognition receptors that bind to conserved motifs on the surface of the pathogen, or through Fc and complement receptors after opsonization of the pathogen (Janeway, 1992). Phagocytic receptors stimulate the polymerization of actin at the point of particle contact, membrane extension around the particle, and subsequent particle internalization (Aderem and Underhill, 1999). Although it is clear that this process is tightly regulated, the molecular mechanisms that control actin polymerization and membrane recruitment to the forming phagosome remain largely unknown.

Cells have evolved a variety of strategies to internalize particles, including receptor-mediated endocytosis and phagocytosis (Aderem and Underhill, 1999). Receptor-mediated endocytosis, the process by which macromolecules and small particles enter cells, is mediated by clathrin while phagocytosis, the uptake of particles >0.5 μm, is actin dependent. Dynamin 2 is a GTPase that acts a critical role in the scission of forming clathrin-coated endocytic vesicles from the plasma membrane (Schmid et al., 1998). Flies with a temperature-sensitive mutation in shibire, the Drosophila dynamin homolog, have a severe defect in receptor-mediated endocytosis that results in the accumulation of partially invaginated clathrin-coated pits at the nonpermissive temperature (Poodry et al., 1973; VanderBliek and Meyerowitz, 1991). In mammalian cells, dynamin localizes to the neck of forming endosomes, and inhibition of dynamin function prevents receptor-mediated endocytosis (Herskovits et al., 1993; VanderBliek et al., 1993; Damke et al., 1994; Talal et al., 1995). Dynamin is therefore thought to function either by generating the mechanical force necessary for vesicular fission from the plasma membrane or by acting as a classical GTPase switch that activates a downstream effector (Hinshaw and Schmid, 1995; Talal et al., 1995; McNiven, 1998; Sweitzer and Hinshaw, 1998; Sever et al., 1999).

Dynamin is targeted to forming endosomes through its interaction with amphiphysin (David et al., 1996; McMahon et al., 1997). Amphiphysin colocalizes with dynamin in nerve terminals and has been shown to assemble with dynamin into ring-like structures around membrane tubules (David et al., 1996; Talal et al., 1999). The C-terminal SH3 domain of amphiphysin interacts with the proline-rich domain of dynamin in a phosphorylation-dependent manner (David et al., 1996; Bauerfeind et al., 1997; Grabs et al., 1997; Slepev et al., 1998). Amphiphysin also interacts with clathrin and the clathrin adaptor protein AP2 through sites in its N-terminal and central domains (David et al., 1996; McMahon et al., 1997; Slepev et al., 1998; Owen et al., 1999); this interaction is also phosphorylation dependent (Slepev et al., 1998). Overexpression of the SH3 domain of amphiphysin in cells inhibits receptor-mediated endocytosis (Shupliakov et al., 1997; Wigge et al., 1997a; Owen et al., 1998). Two major forms of amphiphysin have been identified: amphiphysin I, which is expressed primarily in the brain, and amphiphysin II, which is ubiquitously expressed (Butler et al., 1997).

We raised a panel of monoclonal antibodies directed against proteins that associate with phagosomes in macrophages (Morrissette et al., 1999). One of these antibodies, M8D10, recognizes a novel isoform of amphiphysin II, which we have called amphiphysin IIm. We report here that a mutant form of this amphiphysin lacking its interaction with amphiphysin (David et al., 1996; Mcmahon et al., 1997). Amphiphysin colocalizes with dynamin in nerve terminals and has been shown to assemble with dynamin into ring-like structures around membrane tubules (David et al., 1996; Talal et al., 1999). The C-terminal SH3 domain of amphiphysin interacts with the proline-rich domain of dynamin in a phosphorylation-dependent manner (David et al., 1996; Bauerfeind et al., 1997; Grabs et al., 1997; Slepev et al., 1998). Amphiphysin also interacts with clathrin and the clathrin adaptor protein AP2 through sites in its N-terminal and central domains (David et al., 1996; McMahon et al., 1997; Slepev et al., 1998; Owen et al., 1999); this interaction is also phosphorylation dependent (Slepev et al., 1998). Overexpression of the SH3 domain of amphiphysin in cells inhibits receptor-mediated endocytosis (Shupliakov et al., 1997; Wigge et al., 1997a; Owen et al., 1998). Two major forms of amphiphysin have been identified: amphiphysin I, which is expressed primarily in the brain, and amphiphysin II, which is ubiquitously expressed (Butler et al., 1997).

We raised a panel of monoclonal antibodies directed against proteins that associate with phagosomes in macrophages (Morrissette et al., 1999). One of these antibodies, M8D10, recognizes a novel isoform of amphiphysin II, which we have called amphiphysin IIm. We report here that a mutant form of this amphiphysin lacking the SH3 domain, AmphIImSH3, cannot bind to dynamin. Further, we show that expression of AmphIImSH3 in macrophages significantly impairs phagocytosis at the stage of membrane extension.

Results

Identification and Characterization of the Antigen Recognized by M8D10

In order to identify novel components of the phagocytic machinery in macrophages, we generated a large panel of monoclonal antibodies directed against proteins that
Immunity

286

Figure 1. Cloning and Confirmation of Amphiphysin II as the Ligand for M8D10

(A) A macrophage expression library was probed with M8D10, and the resulting clone was sequenced. The sequence was aligned with amphiphysin II sequences in the GenBank database. The macrophage sequence is most similar to the murine embryonic amphiphysin II isoform, SH3P9, differing only in a 24-amino acid deletion.

(B) A Northern blot of mRNA from the RAW 264.7 macrophage cell line and plate-adhered resident peritoneal macrophages was probed with the amphiphysin II sequence (shown in Figure 1A) and revealed a single transcript of 1.9 kb.

(C) COS7 cells were cotransfected with a plasmid expressing amphiphysin II and one expressing GFP. The cells were stained for immunofluorescence with the M8D10 antibody. Transfected cells were identified by GFP expression. Only transfected cells were positive for M8D10 staining.

Amphiphysin II Lacking a Dynamin 2-Binding Site Inhibits Endocytosis and Phagocytosis

Amphiphysin II participates in receptor-mediated endocytosis, in part, by targeting dynamin to the forming endosome (Leprince et al., 1997; Ramjaun et al., 1997; Wigge et al., 1997b; Volchuk et al., 1998). This implies that deletion of the dynamin-binding SH3 domain of amphiphysin will generate a dominant-negative inhibitor of amphiphysin II function. This mutant was generated (AmphIImSH3²), and, as predicted, V5 epitope-tagged full-length amphiphysin II coimmunoprecipitated with dynamin, while the AmphIIm SH3² mutant was not able to bind dynamin (Figure 3A). Mutant AmphIIm² was expressed in a bicistronic vector with GFP (pTIGZ2 vector) in RAW-TT10 macrophages, allowing transiently transfected cells to be identified by their green fluorescence (Gold et al., 1999; Underhill et al., 1999). Cells expressing high levels of AmphIIm² were severely inhibited in receptor-mediated endocytosis as determined by the uptake of Dil-labeled acetylated LDL in macrophages (Figure 3B), demonstrating that this mutant acts as a dominant-negative inhibitor of amphiphysin II function.
Amphiphysin II Regulates Phagocytosis

Figure 2. Amphiphysin II Localizes to Early Macrophage Phagosomes

Resident peritoneal macrophages were incubated with IgG-opsonized SRBCs (ElgG), complement-opsonized SRBCs (EC3bi), or zymosan for the indicated amounts of time. The cells were stained with M8D10 (A, C, E, G, I, and K) to identify amphiphysin II localization. SRBCs were identified with anti-SRBC antibody (B, D, H, and J), and zymosan were identified on phase images (F and L).

We used the AmphIIm SH32 mutant to investigate the feron-γ (IFN-γ)-induced upregulation of MHC class II, demonstrating that these cells are capable of both role of amphiphysin II in phagocytosis. Both epitope-tagged full-length amphiphysin IIm and AmphIImSH32 localized to phagosomes with the same kinetics as actin (Figure 3C). This demonstrated that the SH3 domain of amphiphysin II is not required for its localization to the site of particle binding and established that the mutant is correctly localized to exert an effect on phagocytosis. Further, as predicted by the biochemical data above, dynamin 2 was not enriched at the site of particle binding in cells expressing AmphIImSH32 (data not shown). RAW-TT10 cells were transiently transfected with AmphIImSH32, and phagocytosis of either tetramethylrhodamine-labeled zymosan, IgG-opsonized SRBCs, or C3bi-opsonized SRBCs was assessed as a function of the level of expression of the GFP/dominant-negative protein by two-color flow cytometry. AmphIImSH32 inhibited Fc receptor-mediated phagocytosis by 74%, complement receptor-mediated phagocytosis by 73%, and zymosan phagocytosis by 82% (Figure 4).

The defect in phagocytosis was not due to an effect of AmphIImSH32 on the level of phagocytic receptors, since transfected cells expressed normal cell surface levels of Fc receptors (CD16 and CD32) and C3bi receptors (Mac-1) (data not shown). In addition, particle binding at 4°C was also unimpaired (data not shown). Cell viability and other actin-based processes were unaffected by the expression of the mutant, since RAW-TT10 cells expressing AmphIImSH32 polymerized actin at the site of particle binding (Figure 3C) and spread normally in response to phorbol esters (data not shown). In addition, mutant amphiphysin had no effect on inter-

Amphiphysin IIm Acts at the Stage of Membrane Extension

To determine the point at which phagocytosis was arrested, AmphIImSH32-expressing RAW-TT10 cells were studied by scanning electron microscopy (SEM). Ten minutes after contacting IgG-coated SRBCs, control cells (expressing pTIGZ2 alone) showed characteristic membrane ruffles extending around the particles (Figure 5A), while AmphIIm SH32-expressing cells only generated small pedestals beneath the bound SRBCs (Figure 5B). After unbound SRBCs were washed away and phagocytosis was allowed to proceed for an additional 50 min at 37°C, the pTIGZ2 control cells had internalized ~90% of the particles (Figure 5C; Table 1). In contrast, <30% of the particles associated with the AmphIImSH32-expressing cells were internalized (Figure 5D; Table 1), and, most importantly, the small membrane pedestals never extended around the particles.

Phosphoinositide 3-kinase (PI3K) is an important regulator of macrophage phagocytosis, and inhibition of PI3K causes incomplete phagosome closure (Araki et al., 1996; Cox et al., 1999), a phenotype very similar to that observed in cells expressing mutant amphiphysin. Interestingly, treatment of macrophages with wortmannin, a PI3K inhibitor, prevents the recruitment of amphi-
Immunity

Figure 4. AmphIIm SH3 inhibits macrophage phagocytosis

Transiently transfected RAW-TT10 macrophages internalized the indicated particles for 10 min. Uninternalized particles were removed, and the cells were analyzed by flow cytometry. Phagocytosis is expressed as the percent of highly expressing transfected cells internalizing particles relative to the percent of untransfected cells internalizing particles. Control and AmphIIm SH3 cells expressing the same level of GFP were compared. The data shown represent a minimum of three independent experiments, and error bars reflect standard error of the mean.

Discussion

We have demonstrated that a novel isoform of amphiphysin II associates with early phagosomes and that a dominant-negative mutant of this protein blocks phagocytosis by preventing membrane extension around the particle. The fact that inhibition of amphiphysin II function prevents phagocytosis mediated by a range of receptors suggests that it has a general role in particle internalization.

The amphiphysins are a family of proteins that have a role in receptor-mediated endocytosis (Wigge and McMahon, 1998). To date, two genes have been defined that encode amphiphysin I and amphiphysin II. Amphiphysin I, which is found exclusively in the brain, contains several distinct functional domains. Its N-terminal coiled-coil domain promotes dimerization of the molecule, a DPW/F(A) domain that interacts with adaptor protein-2 (AP-2), and a proline-rich linker domain that binds to clathrin, and a C-terminal SH3 domain that binds to dynamin and synaptojanin (David et al., 1996; McPherson et al., 1996; de Heuvel et al., 1997; Grabs et al., 1997; Micheva et al., 1997; Wigge et al., 1997a, 1997b; Owen et al., 1999). The association of amphiphysin with its binding partners is regulated by phosphorylation; phosphorylation of amphiphysin inhibits its binding to clathrin and AP-2, while the phosphorylation of dynamin and synaptojanin prevent their binding to amphiphysin (Bauerfeind et al., 1997; Slepnev et al., 1998).

Amphiphysin II is distributed ubiquitously and has a wider diversity of splice variants than amphiphysin I (Butler et al., 1997; Tsutsui et al., 1997; Wechsler-Reya et al., 1997; Ramjaun and McPherson, 1998). Some amphiphysin II splice variants have a very similar structure to amphiphysin I and appear to bind all the same proteins (Butler et al., 1997; Leprince et al., 1997; McMahon et al., 1997; Ramjaun and McPherson, 1998). Other splice variants have deletions of the established binding sites for clathrin and AP-2, but it is not known whether they bind.
Amphiphysin IIm Regulates Phagocytosis

Figure 5. AmphIImSH32 Inhibits Membrane Recruitment to the Forming Phagosome
Transiently transfected cells were sorted by FACS, and cells expressing the highest levels of GFP were studied by SEM. Sorted cells were incubated with IgG-coated SRBCs for 10 min (A and B) or for 1 hr (C and D). After a 10 min internalization, control pTIGZ2-transfected cells demonstrated membrane ruffling at the site of particle binding (A), and after 1 hr ~90% of the particles were internalized (C). By contrast, cells expressing AmphIImSH32 only had small pedestals beneath the bound particles at both time points (B and D). The size bar shown in (B) applies to all SEMs.

can bind these proteins via alternative sites (Butler et al., 1997; Ramjaun and McPherson, 1998; Ramjaun et al., 1999). The amphiphysin II isoform that we have identified in macrophages, amphiphysin IIm, is most similar to SH3P9, a murine transcript identified in embryos (Sparks et al., 1996). Both of these transcripts have a large segment of the central domain spliced out of them, including the two defined clathrin binding sites. Further, neither of these transcripts have the defined AP-2 binding motif or the N-terminal insert domain previously defined to cause plasma membrane targeting. Despite the lack of these targeting domains, amphiphysin IIm localizes to phagosomes, and a dominant-negative form of the protein inhibits particle internalization and endocytosis. Although the dominant-negative mutant of amphiphysin IIm lacks the SH3 domain, it localizes to phagocytic cups, suggesting that the phagosomal targeting domain does not reside in this region of the protein. It is, however, possible that this mutant dimerizes with the endogenous protein and that targeting is mediated by the native SH3 domain.

Amphiphysin IIm localizes to phagosomes with kinetics that precisely mirror that of actin. Amphiphysins have been associated with actin-based events in a variety of systems. Two human isoforms of amphiphysin II that are predominantly expressed in muscle colocalize with the cytoskeletal protein ankyrin (Butler et al., 1997); ankyrin has also been shown to associate with phagosomes (Moffat et al., 1996). Amphiphysin I colocalizes with actin patches at the leading edge of growth cones, and expression of an antisense construct of amphiphysin I inhibits neurite outgrowth (Mundigl et al., 1998).

Disruption of the two yeast homologs of amphiphysin, rvs161 and rvs167, disrupts endocytosis as well as normal actin dynamics (Munn et al., 1995; Sivadon et al., 1995; Balguerie et al., 1999), and the SH3 domain of Rvs167p was identified in a two-hybrid screen for actin binding proteins (Amberg et al., 1995). Amphiphysin II binds to dynamin and synaptojanin, both molecules that regulate membrane traffic (Leprince et al., 1997; Ramjaun et al., 1997). We have recently shown that a dominant negative form of dynamin 2, dynK44A, also inhibits phagocytosis by preventing membrane extension (Gold et al., 1999). Amphiphysin IIm localizes to phagosomes with kinetics that precisely mirror that of actin. Amphiphysins have been associated with actin-based events in a variety of systems. Two human isoforms of amphiphysin II that are predominantly expressed in muscle colocalize with the cytoskeletal protein ankyrin (Butler et al., 1997); ankyrin has also been shown to associate with phagosomes (Moffat et al., 1996). Amphiphysin I colocalizes with actin patches at the leading edge of growth cones, and expression of an antisense construct of amphiphysin I inhibits neurite outgrowth (Mundigl et al., 1998).

Disruption of the two yeast homologs of amphiphysin, rvs161 and rvs167, disrupts endocytosis as well as normal actin dynamics (Munn et al., 1995; Sivadon et al., 1995; Balguerie et al., 1999), and the SH3 domain of Rvs167p was identified in a two-hybrid screen for actin binding proteins (Amberg et al., 1995).

Figure 6. PI3K Is Necessary to Recruit Amphiphysin IIm to the Site of Particle Binding
Resident murine peritoneal macrophages were treated with wortmannin for 1 hr and incubated with zymosan for 10 min. Arrows indicate the site of zymosan binding. Actin polymerized under the bound particles (A), but amphiphysin IIm was not enriched in the actin pedestals (B).

Table 1. Bound, Incompletely Internalized Particles

<table>
<thead>
<tr>
<th>Bound Particles</th>
<th>10 min</th>
<th>1 hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>435 ± 17*</td>
<td>45 ± 5*</td>
</tr>
<tr>
<td>AmphIImSH32</td>
<td>509 ± 32*</td>
<td>375 ± 73*</td>
</tr>
</tbody>
</table>

* Represents number of bound, incompletely internalized IgG SRBC per 100 macrophages examined by scanning electron microscopy. Error is standard error of the mean from three samples. Examination of parallel samples by fluorescence confirmed that after 1 hr ~90% of the particles on the control cells were internalized, while ~30% of the particle associated with the AmphIImSH32-expressing cells were internalized.
dynam facilitates membrane extension around the particle, although the precise mechanism by which this happens is unknown. It still remains possible that the inositol 1,4,5-triphosphate synaptoplanin also participates in phagocytosis.

Inositol lipid turnover occurs during phagocytosis and inhibition of PI-3 kinase prevents particle internalization at the stage of membrane extension around the particle (Araki et al., 1996; Cox et al., 1999). Indeed, inhibition of PI-3 kinase blocks the recruitment of amphiphysin IIm and dynamin to the phagosome. Thus, we have established a signaling pathway whereby engagement of a phagocytic receptor triggers rapid actin polymerization beneath the particle. Activation of PI-3 kinase is then required to recruit amphiphysin IIm to the phagosome, which in turn is necessary for the recruitment of dynamin. This cascade of events is essential for membrane extension around the particle and subsequent particle internalization. The uptake of bacterial pathogens is a critical step in initiating both the innate and acquired immune response; we have now demonstrated that amphiphysin IIm is important in this process.

Experimental Procedures

Expression Cloning of Amphiphysin

Ascites from the hybridoma line MBD10 was used to screen a day 16 mouse embryonic expression library (Novagen). Filters were probed with a biotinylated secondary antibody followed by a streptavidin-conjugated peroxidase and positive plaques were detected with a DAB color reaction (all reagents from Vector). Plaque-purified positives were isolated and the DNA insert was purified and sequenced with vector-specific primers on an ABI automated sequencer. GCG (Genetics Computer Group) and Sequencher (Gene Codes Corporation) software packages were used to align the gene sequences.

Northern Blot Analysis

Total RNA was isolated (Trizol, Gibco-BRL) from RAW 264.7 cells (American Type Culture Collection [ATCC]) and from plate-adhered resident peritoneal macrophages from ICR mice (Charles River). mRNA was generated from total RNA by passage over oligo dT columns (Message Maker, Pharmacia). mRNA (2 μg) for each sample was electrophoresed on a 1% agarose/formaldehyde gel and transferred to Hybond (Amersham). This Northern blot was hybridized with a randomly primed probe generated from the full-length amphiphysin IIm cDNA (Prime-It II, Stratagene) using standard techniques with protease inhibitor cocktail (Sigma, P8340) by rocking at 4 °C for 1 hr. After washing with PBS, the cells were incubated in media at 37 °C for the times indicated in the text. The cells were fixed in formalin (10 min, room temperature [RT]), permeabilized in 0.25% Triton X-100 in PBS (10 min, RT), washed twice in PBS, and incubated with primary antibody (MBD10 hybridoma supernatant and anti-sheep red blood cell [RBC] antibody purchased from InterCell) for 1 hr at RT. The coverslips were washed in PBS and incubated with the appropriate secondary antibodies (all FITC- and TRITC-conjugated antibodies were from Cappel; Cy5 conjugates from J. Jackson). Actin was stained with rhodamine-phalloidin (Molecular Probes). After 1 hr incubation, the slides were washed in PBS, rinsed briefly in distilled water, and mounted in a polyvinyl alcohol-based mounting media (Harlow and Lane). All confocal images were obtained on a Zeiss Axiophot microscope equipped with Biorad Confocal optics.

Immunofluorescence Characterization

Murine resident peritoneal (RP) macrophages were isolated and cultured as previously described (Allen and Aderem, 1996). Stabilized phagosomes were created by centrifuging particles onto the cells at 1600 rpm and 4 °C for 1 min. (Prior to exposure to C3biopsonized particles, cells were treated with 200 nM PMA for 30 min.) After washing with PBS, the cells were incubated in media at 37 °C for the times indicated in the text. The cells were fixed in formalin (10 min, room temperature [RT]), permeabilized in 0.25% Triton X-100 in PBS (10 min, RT), washed twice in PBS, and incubated with primary antibody (MBD10 hybridoma supernatant and anti-sheep red blood cell [RBC] antibody purchased from InterCell) for 1 hr at RT. The coverslips were washed in PBS and incubated with the appropriate secondary antibodies (all FITC- and TRITC-conjugated antibodies were from Cappel; Cy5 conjugates from Jackson). Actin was stained with rhodamine-phalloidin (Molecular Probes). After 1 hr incubation, the slides were washed in PBS, rinsed briefly in distilled water, and mounted in a polyvinyl alcohol-based mounting media (Harlow and Lane). All confocal images were obtained on a Zeiss Axiophot microscope equipped with Biorad Confocal optics.

Immuno precipitation and Immunoblotting

RAW-TT10 cells, a clone of the RAW 264.7 (ATCC) cell line that was stably transfected with the tetracycline transactivator (Gold et al., 1999; Underhill et al., 1999), were transfected with either V5 epitope-tagged full-length amphiphysin IIm or V5 epitope-tagged AmphIImSH3 (Dynamin). Inositol lipid turnover occurs during phagocytosis and inhibition of PI-3 kinase prevents particle internalization at the stage of membrane extension around the particle. Activation of PI-3 kinase is then required to recruit amphiphysin IIm to the phagosome, which in turn is necessary for the recruitment of dynamin. This cascade of events is essential for membrane extension around the particle and subsequent particle internalization. The uptake of bacterial pathogens is a critical step in initiating both the innate and acquired immune response; we have now demonstrated that amphiphysin IIm is important in this process.

The vector pSFFV-eGFP expresses an enhanced green fluorescent protein under the direction of the spleen focus-forming virus (SFFV) LTR. The plasmid was constructed by first deleting the CMV promoter of ppcDNA3 (Invitrogen) by excising the 0.9 kb BglII-BamHI fragment containing the promoter and ligating the vector closed. A 1.2 kb EcoRI-Sall fragment of p651 (kindly provided by Michel Nussenzweig) containing the SFFV LTR and a 0.8 kb Sall-NotI fragment of pegFP-N1 (Clonetech) containing the coding region for enhanced green fluorescent protein were cloned together into the EcoRI-NotI site of the vector.

Cell Surface Staining

Cells to be stained for FcRII and FcRIII were resuspended into FACS buffer (PBS, 2% FCS, 0.5 mM azide), while cells to be stained for Mac-1 were resuspended into 2.4G2 supernatant (ATCC) and incubated 15 min on ice. Primary antibody (biotinylated 2.4G2 for
Amphiphysin IIm Regulates Phagocytosis

291

F(ab)2 staining or biotinylated anti-mouse CD11b antibody, both from PharMingen) was added, and the cells were incubated on ice for 20 min. Cells were washed in FACS buffer, resuspended in diluted streptavidin-PE (Caltag), and incubated on ice for 15 min. The cells were washed, resuspended in FACS buffer with 1% paraformaldehyde, and analyzed on a FACSkan (Becton Dickinson).

Transfections
COS7 cells (ATCC) were cotransfected with pSFFVeGFP and the amphiphysin I, IIm, or SH3P9 in pcDNA3.1 at a 1:10 ratio using the calcium phosphate method. Forty-eight hours after transfection, the cells were prepared and stained (as described above) and analyzed by confocal microscopy.

RAW-TT10 cells were transiently transfected by electroporation. DNA (10 µg) was added to 5 × 10⁶ RAW-TT10 cells in 250 µl of RPMI (JRH Biosciences) with 10% heat-inactivated FCS (HyClone). The cells were electroporated at 280 volts, capacitance 960 µF, and immediately washed in 5 ml RPMI with 10% FCS. The cells were plated and analyzed 18–24 hr later by FACS or confocal microscopy. In the experiments reported here, tetracycline was always absent from the media, resulting in strong activity of the tetracycline-regulated promoter.

Phagocytosis Assay
TRITC-zymosan was purchased from Molecular Probes. TRITC-labeled SRBC "ghosts" were prepared by incubating SRBCs (ICN/Cappel) in hypotonic lysis buffer (1 mM MgCl₂, 100 mM EGTA in 0.02% PBS) with TRITC-BSA (Molecular Probes) on ice for 1 hr. To restore isotonicity, the cells were resuspended in PBS, and the ghosts were resuspended in PBS/EDTA, fixed with 1% formalin, and analyzed by FACS.

Scanning Electron Microscopy
Eighteen hours after transfection, cells expressing high levels of the indicated proteins were sorted onto thermoxon coverslips (Nunc) using a FACStar plus (Becton Dickinson). Cells were adhered for 3 hr at 37°C, then incubated with IgG-opsonized particles cells, were treated with 200 mM PMA for 30 min.) The cells were incubated at 37°C for 10 min. The extracellular particles were removed; ghosts were lysed with a 20 s wash, TRITC-zymosan was digested for 10 min with 100 µl/ml lyticase (Sigma). The cells were resuspended in PBS/EDTA, fixed with 1% formalin, and analyzed by FACS.

Acknowledgments
This work was supported by grants AI-R37-25032 and AI-R01-32972 from the National Institutes of Health. E. S. G. is a postdoctoral fellow of the American Heart Association and the Cardiofellowes Foundation, and D. M. U. is an Irvington Institute postdoctoral fellow. We thank Dr. Pietro De Camilli for providing an antibody and an expression plasmid for amphiphysin I, Dr. Mark McNiven for providing the anti-dynamin 2 antibody Dyn 2, Dr. Michel Nussenzweig for providing the SFFV LTR, Lea Schroeder for technical assistance, and D. M. U. for providing the SFFV LTR, Lea Schroeder for technical assistance, and D. M. U. for providing the SFFV LTR, Lea Schroeder for technical assistance.

References

